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Abstract 

The dose-response phenomenon characterized by low dose stimulation and high dose toxicity has been reawakened after a 
long period of marginalization. This phenomenon termed hormesis is induced by biological, physical and chemical agents 
and occurs in all groups of living things including whole plants and animals, microorganisms, cells and tissues. Hormesis has 
attracted increased interest among toxicologists from diverse disciplines, resulting to emergence of new scientific tools for its 
study. Statistical models have been developed and used to characterize hormesis dose-response relationships. Some of these 
models include the classical Brain-Cousens model, the Cedergreen-Ritz-Streibig model and their reparameterizations. Other 
hormesis models are the bilogistic models, their modifications or extensions and the hormesis models used in allelopathy 
such as An-Johnson-Lovett model. These models are used to describe either U-shaped or inverted U-shaped dose-response 
relationships and to compute hormesis quantities. This review explored the applications of these models in toxicological 
studies with emphasis to their strengths and weaknesses.
Keywords: Hormesis, dose-response curves, toxicology, mathematical models, effective doses.

INTRODUCTION

Toxicology is a branch of science concerned with the study 
of the toxicity of biological, chemical and physical agents 
to living organisms. The extent of damage is established 
through bioassay involving whole organism (e.g animals, 
plants, microorganisms) or substructure of the organism such 
as cells, tissues or organs. One of the fundamental principles 
of toxicology is that there is a relationship between a toxic 
reaction (response) and the amount of the toxicant (dose). 
The study of dose-response relationships cuts across many 
science disciplines such as biology, medicine, pharmacology, 
chemistry, etc. Dose-response relationships are generally 
dependent on the exposure time and route. Due to complexity 
of biological systems, different dose-response relationship is 
possible for a substance after a different exposure time or route, 
leading to different conclusions on the effect of the toxicant/
stressor under consideration (Beckon et al., 2008). A number 
of responses can be studied, often at different organizational 

levels (e.g population, whole animal or plant, cells, tissue). 
In microbiological studies for instance, responses such as 
cell multiplication, bioluminescence, enzyme activity and 
synthesis, nutrient uptake, CO2 evolution, O2 consumption, 
metabolite production etc could be used to measure the effect 
of a substance on microbial population. The dose-response 
relationship is usually shown in a dose-response curve, a 
2-dimensional plot of dose on the x-axis and response on 
y-axis. The dose-response curve normally takes the form of 
a sigmoid curve (Fig.1), either a monotonically decreasing or 
increasing curve. The concentration at which toxicity appears 
is referred to as the threshold dose level. It is the concentration 
above which toxicity sets in.

The sigmoidal dose-response curve can be fitted with 
a number of monophasic dose-response models such as 
logistic, Weibull, Logit, Probit, Gormpertz models and 
their modifications (see Altenburger et al., 2000; SYSTAT 
Software Inc., 2002, 2006). These models are usually used to 
estimate the EC50 (the half maximal effective concentration or 
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the concentration that inhibited the response by 50%) of the 
substance under test, where EC50 is defined as the inflection 
point of the curve.  However, it is important to note that some 
dose-response curves are not monotonous, but showing initial 
stimulation of response at low dose and subsequent inhibition 
of the response at high dose. This biphasic dose-response 
relationship has gained recognition as a generalizable 
phenomenon and appeared to be the rule rather than 
exception (Calabrese et al., 1999; Calabrese & Baldwin 2001; 
Stepnowski et al., 2004; Calabrese & Blain 2005; Cedergreen 
et al., 2005). This phenomenon termed ‘hormesis’ has been 
observed with all groups of living things for a wide range 
of endpoints. Hormesis is induced by physical and chemical 
stressors including phenolic compounds (Boyd et al., 1997; 
Sinclair et al. 1999; Okolo et al. 2007; Zaki et al., 2008; 
Nweke & Okpokwasili, 2010 a, b; Nweke et al., 2014, 2015), 
perfluorinated carboxylic acids (Mulkiewicz et al., 2007), 
mycotoxins (Li et al., 2014; Wang et al., 2014), bacteriocins 
(Murado & Vázquez, 2010), antibiotics (Welch et al., 1946; 
Randall et al., 1947, Linares et al., 2006; Migliore et al., 2010, 
2013), herbicides (Cedergreen 2008a,b; Cedergreen et al., 
2009; Belz & Cedergreen, 2010; Cedergreen & Olesen, 2010; 
Belz et al., 2011; Belz & Leberle, 2012; Nweke et al., 2016), 
Wastewater (Hoffmann & Christofi, 2001; Nwanyanwu 
& Abu 2010), heavy metals (Christofi et al., 2002; Rodea-
Palomares et al., 2009; Shen et al., 2009) and ionic liquids 
(Cho et al., 2007; 2008, Wang et al., 2011) either as individual 
or as mixtures. Hormesis was commonly observed in the 
toxicity test on luminescent bacteria (Christofi et al., 2002; 
Brack et al., 2003; Fulladosa et al., 2005; Wang et al., 2011; 
Deng et al., 2012; Zhang et al., 2013). Calabrese and Blain 
(2009) reviewed the hormetic effects of inorganic and organic 
chemicals on plants.

Following its recognition, there has been increased interest 
in statistical models that describe hormesis. A number of 

such models have been proposed and are actually in use for 
statistical modeling of biphasic dose-response relationships. 
This review aimed at exploring the existing hormesis models 
as applied in the mathematical modeling of biphasic dose-
response curves. The strengths and weaknesses of these 
models in terms of their ability to estimate hormetic quantities 
and other biologically-relevant parameters in toxicological 
studies were discussed. 

Types of hormetic dose-response relationships

Three main types of biphasic dose-response relationships 
are known in toxicological sciences. First, the dose-response 
relationship characterized by increase in positive effect 
(desirable effect) at low doses of toxic agent and decrease in 
the effect at high doses. Example of this type of hormesis is 
the stimulation of activity of an enzyme at low doses and the 
inhibition of enzyme activity at high doses of a toxic agent, 
producing an inverted U-shaped dose-response curve. Second, 
the dose-response relationship characterized by low dose 
decrease and high dose increase in a given negative effect 
(undesirable effect) at high doses of a substance, producing 
a U-shaped dose-response curve. This type of relationship is 
usually observed in pharmacology. Third, a dose-response 
relationship produced by essential nutrients in which response 
(e.g. growth of an organism) approaches zero at high dose of 
the effecter and the effecter is required for the expression of 
the effect such that the response also approaches zero at low 
dose of the effecter. These dose-response relationships are 
illustrated in Fig. 2.

The relative response

In toxicological studies, the dose-response data are usually 
expressed in relative terms. The data are either expressed as 
percent of the control (response in the absence of toxicant) 

Fig.1: Typical examples of monophasic dose-response curves: (a) monotonically increasing curve, an ascending form of dose-response curve showing a 
positive measure of effect which increased with increase in the dose of the effecter (positive effect), (b) monotonically decreasing curve, a descending form 

of dose-response curve showing positive measure of effect which decreases with dose (negative effect).
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or as percent inhibition of response relative to control as 
shown in equations 1 and 2 respectively. In the former 
transformation, the data runs from 100% of control (y at x = 0) 
to values above 100% (indicating hormesis) before decreasing 
to zero as the concentration of the toxicant increases. When 
expressed as percent inhibition, dose-response data runs from 
0% (y at x = 0) to values below 0% and then increases to 
100% as the concentration increases (see Fig. 3). An inverted 
U-shaped dose-response relationship can be converted to 
U-shaped dose-response relationship when data are expressed 
as percent inhibition of response. The relative response data 
can be expressed as ratio by dividing the expressions by 100. 
This approach has been generally used in the analyses of data 
generated in toxicological studies.

In the logistic model, y is the response, x is the dose, d 
represents the response of the untreated control (y at x = 0) 
and c is the response at infinite dose, e is the dose at which the 
value of d - c is reduced by 50% (ED50) and b is the relative 
slope around ED50.

The log-logistic model and other monotone functions 
produce curves that are strictly decreasing from a maximum 
response at zero dose (control) to lower limit at infinite dose 
or are strictly increasing from zero response (also control) 
to maximum response at infinite dose depending on whether 
the response or relative response (effect) is being analyzed 
(Cedergreen et al., 2005) [Fig.1]. Thus, they cannot be used 
to describe dose-responses with hormesis. There was need 
for mathematical model to describe the initial response 
stimulation in the analysis of dose-response relationships.

One of the earliest if not the first attempt to mathematical 
modeling of hormesis was made by Brain and Cousens 
(1989). They extended the original four-parameter logistic 
model (eq.3) by introducing the term fx to allow for hormesis 
as shown in equation 4.

Fig 2: Biphasic dose-response curves: (a) a U-shaped (also trough or J-shaped) dose-response curve indicating low dose decrease and high dose increase of 
negative effect (b) an inverted U-shaped dose-response curve indicating low-dose stimulatory and high-dose inhibitory responses (c) a dose-response curve 
typical of such produced by essential nutrients in which response approaches zero at high dose of effecter and the effecter is required for the expression of 

the effect such that the response also approaches zero at low dose of the effecter. Note that if the response is normalized relative to the control such that 
the response becomes percent inhibition of response, then type ‘a’ curve can depict stimulation of response at low doses (with negative values of percent 

inhibition) and inhibition of response at high doses.

In equations 1 and 2 is the response of the control and RT 
is the response in the tests (at different concentrations of the 
toxicant). 

The Brain and Cousens hormesis model

Among the monotonic dose-response models, the log-
logistic model (eq. 3) was more frequently used in dose-
response studies. Several studies of dose-response relationships 
following exposure to toxic chemical substances use the log-
logistic function (Field et al., 2002; Abondanzi et al., 2003; 
Nweke & Okpokwasili, 2011a, b, 2012; Azgm & Göksu, 
2015). The log-logistic function expresses dose-response as 
a monotonically increasing or decreasing sigmoidal curve 
that is symmetric about its point of inflection and assuming 
approximately normally distributed data (Schabenberger et 
al., 1999; Cedergreen et al., 2005).

In eq. 4, the parameters d and c are as defined in eq. 3. 
However, the parameters e and b lost their interpretations as 
the ED50 and relative slope at ED50 respectively and thus has 
no straight forward biological meaning (Schabenberger et al., 
1999; Cedergreen et al., 2005). The parameter f denotes the rate 
of stimulation of the response at low dose. If f = 0, eq. 2 reduces 
to the four-parameter logistic model. Thus, f > 0 is a necessary 
condition for the presence of hormesis. The model can be used 
to describe inverted U-shaped and U-shaped curves typical of 
pharmaceuticals (Calabrese & Baldwin, 2001).   

If the data is transformed relative to control as percentages 
(0 to100%) or simple ratio (0 to 1), the dose-response curve 
can be converted to U-shaped curve by simply subtracting 
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the function from 100 or 1 as shown in equations 5 and 6 
respectively.

This approach is generally applied in dose-response curve 
analysis with any dose response model. In this case, the values 
of the parameter estimates remain unchanged. It is important 
to note that when the data is normalized to ratio or percent 
changes relative to control value to give inverted U-shaped or 
U-shaped curve, Eq. 4 can be used to describe both the inverse 
U-shaped and U-shaped curves. However, in U-shaped curve, 
the hormesis parameter for hormesis (f) has a negative value 
(f < 0 and with changes in the value of parameters c and d) 
while in inverted U-shaped curve, the hormesis parameter has 
a positive value (f > 0) (Fig.3). Note that this is different from 

Fig. 3: Dose-response relationships generated from Brain-Cousens model: (a) an inverted U-shaped curve indicating parameters c and d, (b) U-shaped curve 
indicating parameters c and d, (c) an inverted U-shaped curve plotted with arbitrary values of c, d, f, e and b according to eq. 4 (d) a U-shaped curve plotted 

with arbitrary values of c, d, f, e and b according to eq. 2; notice negative value of f (e) a U-shaped curve plotted with arbitrary values of c, d, f, e and b 
according to eq. 5 (f) U-shaped curve plotted with arbitrary values of c, d, f, e and b according to eq. 7. Notice the relationship between the values of c, d, f, e 

and b in curves c, d, e and f.
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the valley obtained by setting f < 0 for an inverse U-shaped 
curve as described by Cedergreen et al. (2005). The values 
of parameters c and d would change (not in interpretation but 
in values) while the values of e and d remain unchanged (see 
Fig. 3).  The effect of this conversion is that the value of c in 
U-shaped curve becomes 100-c’ or 1-c’ and the value of d 
in the U-shaped curve becomes 100- d ‘ or 1- d ‘ (depending 
on whether the dose-response data was normalized to run 
between 0 and 100% or 0 and 1 respectively), where c’ and 
d ‘ are values of c and d respectively in inverted U-shaped 
curve.  Thus, in such cases, the U-shaped curves can also be 
described as:

at lower doses before the initial stimulation of effect at low 
dose or the pre-hormesis toxicity at low dose (Beckon et 
al., 2008; Belz & Piepho, 2012). Fourth, the Brain-Cousens 
model has no explicit formula for the ED50. Thus, numerical 
approaches must be applied to reparameterize the model for 
estimation of ED50 and other effective doses (EDx). According 
to Cedergreen et al. (2005), such reparameterization has 
several drawbacks. It requires some skill in Mathematics to be 
able to perform the mathematical manipulations to obtain the 
reparameterizations. In addition, fitting the reparameterized 
models require finding suitable initial estimates of the 
parameters to ensure convergence, which could be tedious.

Reparameterizations of Brain and Cousens model    

The first attempt to reparameterization of Brain-Cousens 
model to estimate ED50 and its confidence limit was made 
by van Ewijk and Hoekstra (1993) by using a version of 
Brain and Cousens model and setting c at zero in eq. 4. By 
mathematical manipulation of the model, van Ewijk and 
Hoekstra (1993) derived a model (eq. 8) which has ED50 as one 
of the parameters. The model of van Ewijk and Hoekstra has 
the advantage of estimating ED50 and its confidence interval 
directly by non linear regression.

If eq. 5 is used to describe the U-shaped curve, the 
parameters c, d, f, e and b will retain their values as in eq. 
4 (Fig. 3). Eq. 7 can generally be used to describe U-shaped 
hormetic dose-response curves. 

Applications of Brain and Cousens model

Since its introduction, the Brain-Cousens model has 
been used to describe biphasic dose-response relationships 
involving wide range of chemical and physical agents. Velini 
et al. (2008) used the model to describe herbicide hormesis. 
Belz and Piepho (2012) compared Brain-Cousens model 
with its modification proposed by Cedergreen et al. (2005). 
They found Brain-Cousens model more suitable than the 
Cedergreen–Ritz–Streibig model for some dose-response data 
and that both models were equally suitable for some dose-
response data.

Limitations of Brain and Cousens model

Although Brain-Cousens model has been generally used 
for analysis of hormetic dose-response relationships in many 
science fields of study, it is beset with drawbacks and was found 
inappropriate to some dose-response data. First, the value of 
b in eq. 4 is restricted to values greater than 1. At values of 
b smaller than 1, the model does not yield any dose-response 
curve (Cedergreen et al., 2005). Thus, fitting data with greatly 
sloping curves can especially be problematic. Second, Brain-
Cousens model can cause problems when fitting data exhibiting 
a broad hormetic range and early increase in response at lower 
doses (Belz & Piepho, 2012). Third, in Brain-Cousens model, 
the portion of the model representing the effects at low doses 
is linear. The first derivative of the linear function is constant. 
Thus, Brain-Cousens model are founded on the assumption 
that the distribution of sensitivity thresholds for the low-
dose effect of a hormetic substance is constant with respect 
to dose. Such a straight horizontal distribution of sensitivity 
thresholds seems generally unlikely (Beckon et al., 2008). 
Given that the switching function fx describing hormesis is 
linear with slope of f and intercept at d and increasing from 
d, the model will not be able to describe the initial ‘no effect’ 

In eq. 8 (using van Ewijk and Hoekstra notation), d 
represents the response y at x = 0, f is the hormesis parameter 
(if f > 0, the curve shows an increase for low doses), b loses its 
simple interpretation.

After the publication of van Ewijk and Hoekstra (1993) 
article, the van Ewijk-Hoekstra model became a reference 
model for estimating ED50 and its confidence limit where 
subtoxic stimulation occurred. The van Ewijk-Hoekstra 
model has been used to analyze dose-response curves in 
many toxicological studies (eg. Folker-Hansen et al., 1996; 
Fairchild et al., 1998; Muyssen & Janssen, 2001; Groenendijk 
et al., 2002; Belgers et al., 2007; Cho et al., 2007; Mulkiewicz 
et al., 2007, De Silva & van Gestel, 2009;  Castro-Ferreira  et 
al., 2012).

Furthermore, Schabenberger et al. (1999) reparameterized 
the Brain-Cousens model to obtain estimates of arbitrary 
effective doses (EDK), the dose at which the maximum 
stimulating effect occurred (M) and the limiting dose of 
stimulation (LDS) representing the dose at which the effect of 
hormesis has vanished (eqs. 9 – 12). The reparameterizations 
of Schabenberger and co-workers are shown in Table 1 and the 
parameters of the models are illustrated in Fig.4. Details of the 
mathematical manipulations are described in Schabenbeger et 
al. (1999) and its notations have been simplified in the outline 
of Belz and Piepho (2012). In the models of Schabenberger et 
al. (1999), the parameters b, c, d and f are as described in eq. 
4, k is the percentage decrease in the term d – c.
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These reparameterizations of the Brain-Cousens model 
have been used in toxicological studies. For instance Nweke 
et al. (2014; 2015) used it to estimate the effective doses 
of binary mixtures of formulated glyphosate and phenols 
against dehydrogenase activity of Rhizobium species.  Belz 
et al. (2008) used the reparameterized models to estimate 
effective doses and hormesis quantities for predicting 
hormesis produced by mixtures of pollutants, herbicides or 
allelochemicals. Hormetic effects of antibiotic mixtures have 
also been predicted using the reparameterized model (Zou et 
al., 2013). The model was also used to study plant hormesis in 
response to herbicide application (Zelaya & Owen, 2005; Belz 
& Cedergreen, 2010). More recently, Nweke et al. (2016) 
used the model to describe herbicide hormesis in microbial 
community of river water.

MODIFICATIONS OF BRAIN AND COUSENS 
MODEL

Cedergreen-Ritz-Streibig model

Consequent upon the inadequacies of Brain-Cousens model 
as observed by Cedergreen and her coworkers, they modified the 
model by replacing the term fx  in eq. 4 with exp( 1/ )f xα−
to introduce a six-parameter version of modified Brain-Cousens 
model (Cedergreen et al., 2005). The model function for 
inverted U-shaped hormetic pattern is eq. 13.

Table 1: Reparameterizations of Brain-Cousens model (eq. 4) for estimation 
of EDk, M and LDS (Schabenberger et al., 1999).

Fig. 4. U-shaped and inverted U-shaped dose-response relationships plotted 
from Brain-Cousens model to show the hormesis quantities M, LDS and 

ED50

The U-shaped hormetic pattern of Cedergreen–Ritz–
Streibig model is shown in eq. 14 (Drage et al., 2012).

Where f is the hormesis parameter (f > 0 as a necessary 
condition for hormesis), parameters c  and  are as defined 
in eq. 4, while parameters α, b and e has no straightforward 
biological interpretation. The dose-response relationships 
simulated from these models are shown in Fig. 5. The 
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Cedergreen–Ritz–Streibig model can be converted to U-shaped 
form as was described for Brain-Cousens model (see eq. 7).

The new model could describe curves displaying hormesis 
and test for the significance of the hormetic effects and is 
more robust both in terms of variation in data and in terms 
of describing both very large (of an almost 100% increase) 
and relatively small hormetic effect (of a 10% increase) when 
compared with Brain-Cousens model (Cedergreen et al., 
2005).  In addition, the model could be used to calculate the 
maximal hormetic response and any percentage effect dose or 
concentration (EDk) and its associated standard errors from 
the decreasing part of the curve (Cedergreen et al., 2005). 
According to Cedergreen et al. (2005), the new model could 
be used to model the actual control values without the usual 
overestimation that occurs when using strictly decreasing 
model. Furthermore, another advantage of the Cedergreen-
Ritz-Streibig model over Brain-Cousens model is that 
Cedergreen-Ritz-Streibig model better described data sets 
that were characterized by early increase in responses at low 
doses and a broad hormetic dose range (Belz & Piepho, 2012). 
The Cedergreen-Ritz-Streibig model was superior to Brain-
Cousens model in terms of the graphical agreement between 
observed and fitted values (Belz & Piepho, 2012). Similar 

observation was made by Zhu et al. (2013), attributing the 
improved flexibility to the introduction of the parameter α. 
The new model was found to outperform the Brain-Cousens 
model in describing the hormetic data sets evaluated in 
Cedergreen et al. (2005). The Brain-Cousens and Cedergreen-
Ritz-Streibig models have been frequently used in biology 
and have considerably helped hormesis phenomenon to 
earn recognition. Since its introduction, the modified model 
has been successfully applied in plant hormesis studies 
(Cedergreen et al., 2007; Cedergreen et al., 2009; Cedergreen 
& Olesen 2010; Belz & Leberle, 2012).

Limitations of Cedergreen Cedergreen-Ritz-Streibig model

Although the new model has found wide applications in 
toxicological studies, it has got its own limitations. One of 
the limitations of the model is that the parameter α, which 
determines the rate of increase in the hormesis zone, has to 
be fixed because there are rarely enough data available to 
determine the rate of increase statistically (Cedergreen et 
al., 2005). However, this may not be a problem if enough 
data at hormetic zone are available as was shown by Zhu 
et al. (2013) as well as Belz and Piepho (2012). Another 

Fig. 5: Dose-response relationships generated from Cedergreen–Ritz–Streibig model: (a) an inverted U-shaped curve indicating parameters c and d, (b) 
U-shaped curve indicating parameters c and d, (c) an inverted U-shaped curve plotted with arbitrary values of c, d, f, e and b according to eq. 13 (d) a 
U-shaped curve plotted with arbitrary values of c, d, f, e and b according to eq. 14. Notice the unchanged values of c, d, f, e and b, the early hormetic 

response at low doses and the broad hormetic dose range.
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drawback of the model is that the effective doses (EDk), the 
dose of maximum stimulation (M) and the limiting dose for 
stimulation (LDS) could not be determined explicitly from 
the original model. Although, Cedergreen et al. (2005) 
discouraged reparameterizations to introduce these quantities 
as a parameter of the model, and applied delta method and 
statistical software ‘R’ as a robust and feasible approach to 
estimate EDk values with statistical properties, they could not 
estimate LDS. In addition, the maximum dose for hormesis 
(M) was obtained without standard errors and confidence 
intervals. Due to this limitation, ED1 (dose causing 1% 
decrease in response) has been used to characterize the 
transition from stimulation to inhibition in studies where this 
model was applied (for instance in Cedergreen et al., 2005). 
The reports of Belz and Piepho (2012) indicated that the 
Cedergreen-Ritz-Streibig model is not infallible as it could 
not adequately describe some dose-response data especially 
those exhibiting steep curves in the inhibitory dose zone. 
In the study of Zhu et al. (2013) with five sets of biphasic 
dose-response relationships from three different experimental 
systems, the Cedergreen–Ritz–Streibig model was not the 
best among five hormesis models evaluated. In the study of 
Beckon et al. (2008), the Cedergreen-Ritz-Streibig model was 
observed to be scale-dependent, fitting the dose-response data 
of the effect of histamine on phagocytosis fairly well only 
after the data were transformed by multiplying the dose-axis 
by a very large factor.  

Reparameterizations of Cedergreen-Ritz-Streibig model

Cedergreen et al. (2005) discouraged reparameterization 
and recommended the use of delta method and software R, with 
add-on package drc for analysis of hormetic dose-response 
data. However, this approach only allowed the estimation of 
EDk doses with statistical properties and to extract M without 
statistical properties. Therefore, applications of their model 

are limited to situations where M estimates are sufficient 
without confidence limits and where LDS estimations in 
the form of ED1 are adequate (Belz & Piepho, 2012).  This 
approach was found applicable in most studies involving 
hormesis. However, it was not applicable in the study of Belz 
et al. (2008) where the LDS was used to predict hormesis 
in joint action analysis of pollutant toxicities. Furthermore, 
the approach as recommended by Cedergreen et al. (2005) 
may not have been easier than parameterization for some 
users. Researchers may find either of the approaches more 
competitive. This remains a pending question that is worth 
exploring (Belz & Piepho, 2012). 

The need to evaluate the impact of hormesis model selection 
on effective dose estimates and other hormetic quantities 
necessitated the use of reparameterizations to allow for their 
explicit estimations. To solve this problem, Belz & Piepho 
(2012) provided a general method for reparameterization 
of the Cedergreen-Ritz-Streibig model model to allow for 
estimation of M, LDS and EDk doses with their confidence 
interval. The reparameterizations (eqs. 15 – 17) are shown in 
Table 2.

Other modifications of Brain and Cousens model

Other modifications of Brain and Cousens model as 
introduced by Tu et al. (2007) are:

Table 2: Reparameterizations of Cedergreen-Ritz-Streibig model (eq. 13) for estimation of EDk, LDS and M (Belz & Piepho 2012).

Parameterization for estimating EDK; parameter to be replaced in equation 13

Parameterization for estimating LDS (EDK= 0): parameter to be replaced in equation 13

Parameterization for estimating M parameter to be replaced in equation 13
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In Eqs. 18, 19 and 20, the parameters c, d, f and e are as defined in 
eq. 4. The parameter ω is related to parameter b of the original Brain-
Cousens model. eq. 18 is very much similar to the original Brain-
Cousens model (eq. 4) in terms of its strengths and weaknesses. 

Equations 19 and 20 use the non-monotonic weighting 
function, fx/exp(x) to weight the logistic switch-off function. 
This allows the hormesis effect to dominate at the early stage 
and gradually diminish unlike the weighting function, fx that 
never vanishes. Unlike the Cedergreen–Ritz–Streibig model, 
eqs. 19 and 20 are not applicable to dose-response data with 
broad hormetic dose range but can be used to describe early 

increase in responses at low doses within a narrow hormesis 
zone (see Fig. 6).  These equations were originally used to 
model time-dependent hormetic growth of Escherichia coli 
(Tu et al., 2007). Nonetheless, they can be adopted for general 
application in toxicological studies. Our experience with the 
models indicated that equations 19 and 20 could be problematic 
with data having large dose values. To get around this, large 
doses can be divided by 1000 or be transformed to ln (dose). In 
addition, to prevent the models from returning unrealistic low d 
values (underestimation of d), d can be fixed to experimentally 
observed response at zero dose. Eq. 20 appeared to be suitable 
for dose-response data that had saturation effect at values far 
below 100% inhibition as the concentration of the toxicant 
increases. The transformations applied to the original Brain-
Cousens model are applicable to eqs. 18 – 20. Thus, the inverted 
form of eq. 18 can be written as eq. 21 (to show only one) to 
describe U-shaped hormetic dose-response relationships.

Fig. 6: Inverted U-shaped and U-shaped dose-response relationships generated from the modified Brain-Cousens model according to eq. 18 (a and b), eq. 19 
(c and d) and eq 20 (e and f). Notice the early hormetic response at low doses and the narrow hormetic dose range of equations 19 and 20.
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Statistical test for hormesis

In the Brain-Cousens and Cedergreen-Ritz-Streibig 
models as well as their reparameterizations, the parameter 
f determines the size of hormesis. If f = 0, the equations 
are reduced to the original logistic model. Thus, f > 0 is an 
important condition for hormesis. These models permit a 
simple test for hormesis. To test for the statistical significance 
of hormesis, the models can be fitted to the experimentally-
observed data using statistical software. If the 95% confidence 
interval for the estimate of f does not fall within zero (0), then 
the hormetic effect is statistically significant. Details of the 
process for statistical test for hormesis with Brain-Cousens 
model have been discussed by Schabenberger et al. (1999). 
Alternatively, the experimental data exhibiting hormesis can 
generally be compared with the control (y at x = 0) using ttest or 
Duncan test implemented in statistical softwares to determine 
if hormetic effect varied significantly with the control.

Bi-logistic hormesis models

Brain-Cousens model in the original versions are not 
suitable for substances that are essential to the test organism, 
for instance essential nutrients that gives beneficial effects at 
low doses (such that d = 0), and inhibitory effects as the dose 
increases. In the Brain-Cousens model types, the baseline 
effect from which the EDK is calculated is the zero dose 
asymptotes d, and thus is not suitable for essential effecters.  
Beckon et al. (2008) proposed a general approach to describe 
biphasic relationships for essential effects (with d = 0) and 
effecters with nonzero asymptote (d > 0). The general model 
for essential substances is a multiplicative combination of log-
logistic function such as equation 22, based on the assumption 
that both negative and positive effect of the substance may 
be well described by log-normal distributions. Equation 22 
has slopes of opposite sign, one for the upslope (+ slope) and 
the other for the downslope (- slope) of the biphasic dose-
response relationship.

expression of the effect). It is important to note that eq. 22 
could be used when the maximum measured effect equals 
1, or when the effects have been normalized relative to the 
maximum value to run from 0 to 1 (or 0% to 100%) in the 
rising curve or from  1 to 0 (or 100% to 0%) in the falling 
curve. This transformation of dose-response data can be done 
as shown in equation 23.

In eq. 22, βUp represent the rising slope (+), xUp is the 
dose at midpoint of the rising slope, βDn represent the falling 
slope (-), xDn is the dose at midpoint of the falling slope. The 
multiplicative model describes a dose response relationship in 
which y is a positive measure of effect such as growth of an 
organism. At sufficiently high concentrations of the substance, 
the response y approaches zero and also y approaches zero at 
very low concentration (the substance being essential to the 

Where y is the relative measured positive effect, y (dose) 
is the effect at a given dose of the substance and a is the 
maximum effect. The relative effects can be transformed to 
percentages by multiplying the term by 100. When the data is 
not transformed, equation 22 can be rewritten as 5-parameter 
version shown in eq. 24. Thus, eq. 22 also holds for non 
transformed data if the maximum effect is 1 (ie a = 1). 

The parameters of equation 24 are as defined in equations 
22 and 23.

Beckon et al. (2008) generalized eq. 22 to accommodate 
non-zero low and high dose asymptote (eq. 25) similar to the 
Brain-Cousens model as illustrated in Fig. 7.

In eq. 25, parameters d and c are as defined in eq. 3 and 
the parameter Max is the theoretical maximum that would 
be approached asymptotically (by the rising component of 
the equation) in the absence of the descending component 
(or vice versa), xUp, βUp, xDn and βDn are as defined in eq. 22. 
Equation 25 is a modification of the original Brain-Cousens 
model by introduction of a logistic weighting function at 
the hormesis region which describes the rising curve of the 
hormetic dose-response model. Equation 25 describes dose-
response relationships with hill-shaped curves (Fig. 7). It can 
be rearranged to produce a function (eq. 26) that describes 
dose-response relationships for negative measure of effect or 
dose-response data transformed to percent inhibitions, which 
has U-shaped curves.

In eq. 26, the parameters are as defined in equations 
22, 24 and 25, Min is the minimum effect that would be 
approached by the downslope in the absence of the upslope. 
Such U-shaped dose-response curves can also be described 
by equations formed by subtracting eq. 25 from 100 or 1 (as 
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was done in eqs. 5 and 6) depending on whether the data was 
transformed to percent inhibition or ratio respectively, relative 
to the control.

equation 26 provided better descriptions of hormetic data 
sets than Brain-Cousens model, its reparameterized version 
of van Ewijk and Hoekstra (1993) and its modification by 
Cedergreen et al. (2005). However, the model has its own 
limitations. Like other hormesis models, the model of Beckon 
et al. has no explicit parameter for the effective doses. The 
mathematical manipulations required to reparameterize this 
model for effective doses computation could be laborious. In 
addition, Beckon’s model could have disagreement between 
the interpretation of some parameters and their corresponding 
fitted values. The parameter Max is only the estimate of peak 
and does no represent the exact peak of the curve. The value of 
Max depends on the slopes of the dose-response curve. Also, 
the parameters xUp and xDn lose their interpretive utility if one 
or both slopes approach 0 (Beckon et al., 2008).  By making 
reference to the hormetic quantities shown in Fig. 7b, eq. 25 
can also be written for U-shaped curves as (eq. 27).

Beckon and co-workers also introduced an additive 
bilogistic model (eq. 28) to describe biphasic dose-response 
data. According to Beckon et al. (2008), equation 28 is as 

Fig. 7. Inverted U-shaped and U-shaped dose-response relationships plotted from the bilogistic models eq. 25 and eq. 26 respectively, to illustrate model 
variables (a and b) and plotted with arbitrary parameter values to illustrate the relationship between U-shaped and inverted U-shaped dose-response 

relationships (c and d).

Equations 22, 25 and 26 can be used for statistical test 
for hormesis as described by Brain and Cousens (1989) 
since the equations reduce to log-logistic model if either of 
the slope parameter is zero. When compared with Brain-
Cousens and Cedergreen-Ritz-Streibig models, the logistic 
models proposed by Beckon et al. (2008) provided better 
description of hormetic dose-response relationship when 
tested with empirical data (see Beckon et al. (2008) for more 
details). Zhu et al. (2013) compared the model of Beckon 
et al. (eq. 26) with other hormesis models and found that 
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good as the multiplicative model yielding almost identical 
parameter estimates. 

Where d is the untreated control (y at x = 0), c is the 
expected response at infinite dose, Min is the minimum effect 
that would be approached by the downslope in the absence 
of the upslope, βUp is the steepness of the rising (positive) 
slope, xUp is the dose at the midpoint of the rising slope, βDn 
is the steepness of the falling (negative) slope and xDn is the 
concentration at the midpoint of the falling slope (see Fig. 7b).

Eq. 31 has been found to be robust in fitting biphasic dose 
response data. Out of five biphasic dose-response functions 
evaluated by Zhu et al. (2013) on experimental dose-response 
data set, Eq. 31 gave the best description of data in terms of 
the goodness-of-fit statistics. In addition, the value of Min 
estimated by this function was more reasonable in terms of 
its interpretation when compared with eq. 26 of Beckon et al. 
(2008). Setting d and c to zero and 100% respectively, eq. 31 
can be simplified as (eq. 32): 

Where the parameters are as defined in eq. 25. During 
curve fitting, care must be taken in order to select appropriate 
initial estimates (especially for d and Max) for realistic final 
estimates.  

An equation (eq. 29) similar to eq. 28 for U-shaped dose-
response curve was proposed by Deng et al (2012). The model 
is a bilogistic model since it was obtained through algebraic 
addition of two logistic functions representing the stimulation 
and inhibition zones of the biphasic curve.

Where y is the response, x is the dose, c is the response at 
infinite dose of the toxicant, d is response at the zero dose. xDn 
and βDn are the mid point and slope respectively of the down 
sloping curve while xUp and βUp are the midpoint and slope 
respectively of the upsloping curve. The model is generally 
used for dose-response data that is transformed to percentage 
inhibitions as described earlier.

In eq. 29, the inhibition at the control (d) and at the largest 
concentration (c) of the toxicant can be set at 0 and 100% 
respectively and eq. 29 can be simplified as shown in eq. 30 
(Deng et al 2012; Li et al., 2014).

Another bilogistic hormesis model worthy of note is eq. 
31 (OriginLab Corporation). Eq. 31 is similar to eq. 29 and 
is good for describing U-shaped dose-response curves of 
the type found in Pharmacology and the curves normalized 
relative to controls.

Ge et al. (2011) and Chen et al. (2015) used this simplified 
version of eq. 31 to adequately describe the hormetic effects 
of mixtures of ionic liquids on luciferase activity.

The algebraic addition of two models can be applied to 
other monotonic dose-response models to obtain hormesis 
function. This approach was used by Murado and Vazguez 
(2010) to describe hormetic effects of antimicrobial agents on 
microbial growth.

Extended logistic hormesis model

Beckon et al., (2008) extended the bi-logistic model (eq. 
25) to obtain a model (eq. 33) accommodating two positive 
and two negative effects (four phases). 

The extended model gave a better fit than eq. 25 when 
tested with an experimental data set on the effects of histamine 
on phagocytosis of the protozoan Tetrahymena pyriformis (see 
Beckon et al., 2008). In these models, c can be fixed at zero and 
d can be fixed at the control value (y at zero dose). The bilogistic 
and extended logistic models can generally be used to describe 
broad hormesis zone and longer pre-hormesis ‘no effect’ doses.  

The multiplicative models based on 4-parameter logistic 
function have been further developed by Di Veroli et al. 
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(2015) to describe dose-response curves with multiphasic 
features (including stimulation at low doses). There model is 
of the form:

function (eq. 37) to include hormesis behaviour by Lyles et al. 
(2008) as shown in eq. 38.

Equation 34 can be rewritten as:

Where E(x) is the effect (y) obtained at a given concentration 
x, E(xi) is the effect obtained at a given concentration C (x) 
in the ith phase of the dose-response curve, n is the number 
of phases, ei is the relative 50% effective concentration of 
the phase, bi is the hill exponent (slope function), ai is the 
maximum effect and d is the effect in the absence of effecter 
(control).

The model enables interpreting each phase of the dose-
response relationship as an independent dose-dependent 
process and thus provides a robust approach to fit dose-response 
curves with various degree of complexity (Di Veroli et al., 
2015). An algorithm was developed, which could automatically 
generate and rank dose-response models with varying degree 
of multiphasic features typical of pharmacological studies. This 
algorithm can be implemented in the freely available software, 
Dr fit (sourceforge.net/projects/drfit/).

However, finding good initial estimates for the parameters 
is a tedious exercise in statistical softwares, probably because 
the response at zero dose (d) appeared in all the phases with 
the same value for all observable phases in a multiphasic 
dose-response curve. We observed that varying the value 
of the parameter d in the different phases of multiphasic 
dose-response curve (as different parameters in each phase) 
simplifies the curve fitting process. Nevertheless, there 
could be disagreements between the interpretation of some 
parameters and their fitted values. Whether this problem 
can be solved by putting constraints on the parameters or by 
modifying the model is a subject for further study.  

HORMESIS MODELS DERIVED FROM OTHER 
MONOTONIC SIGMOID FUNCTIONS

The principle behind the addition of hormetic behaviour 
to Brain-Cousens model can be extended to other monotonic 
functions. A typical example is the extension of Gompertz 
model to include hormesis term as shown in eq. 36 (Cedergreen 
et al., 2005).

Where the parameters are as described in equation 4.
Eq. 36 possess weakness similar to those of the Brain-

Cousens model for shallow dose response curve (Cedergreen 
et al., 2005) Another example is the extension of the sigmoid 

Where y is the response at dose x, a is the theoretical 
maximum response at x = 0, b is the slope parameter and e 
is related to ED50. The parameter a is only the estimate of 
the maximum response at x = 0 and does not represent the 
exact response at zero dose. Equation 38 does not allow 
determination of ED50 as a parameter in the model. To allow 
explicit determination of ED50 as model parameter, eq. 38 was 
reparameterized to give eq. 39 (Lyles et al. 2008).

Fitting equations 38 and 39 to dose-response data with 
large doses (x) could be problematic. In order to simplify 
curve fitting process, it is important to transform x to ln(x) or 
divide by large numbers when large x values are encountered. 
It is also important to note that these extended models do 
possess weaknesses similar to those of Brain-Cousens model 
for shallow dose-response curves (Cedergreen et al., 2005).

Models used for allelopathic hormesis

Alternative models used to describe hormetic effects 
of chemicals are the models originally proposed for the 
description of allelopathic hormesis. Allelopathy is a 
biological phenomenon by which an organism produces 
one or more biochemical substances which have detrimental 
or occasionally beneficial effects on another organism. 
This phenomenon has been extensively studied in plants. 
Allelochemicals are well known to induce hormesis, 
stimulating plant growth at low concentration and inhibiting 
plant growth at high concentrations (Rice, 1984; Lovett et al., 
1989). To describe allelopathic hormesis, An et al. (1993) 
proposed a model (eq. 40) based on the hypothesis that the 
response to allelochemicals is simultaneously stimulatory and 
inhibitory in nature. The An-Johnson-Lovett model gave good 
simulation of hormetic response to allelopathic chemicals, for 
a wide range of experimental conditions (An et al., 1993).

In equation 40, y is the biological response at a given 
concentration of the chemical substance x, yo is the response 
at zero dose (y at x = 0), Sm is the maximum stimulatory 
response and Ks is a constant that describes the response 
of stimulation to increment of the limiting factor, Im and 
Ki are the respective parameters of the inhibitory attribute. 
Parameter q is a constant.
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In the study of allelopathy, the responses to allelochemical 
are usually expressed as percent of control. Thus, with the 
control (%) set at 100%, the response, y% of control is given as:

models. Unlike equations 42 and 43, the An-Johnson-Lovett 
model had good agreement between the interpretation of the 
effect at zero dose (yo) and their corresponding fitted value. 
Although these models were originally used in the study of 
allelochemical hormesis in plants, they can be adopted for the 
study of biphasic responses of other organisms to hormetic 
chemicals. The An-Johnson-Lovett model has been used 
widely in modeling plant allelopathy. Belz and Piepho (2012) 
used it as an alternative model to describe dose-response 
relationship for the effect of 2-phenylethyl-isothiocyanate 
on root elongation of Amaranthus hybridus where the Brain-
Cousens and Cedergreen-Ritz-Streibig models were both 
unsuitable. Although the model proved a significant hormetic 
effect unlike the logistic models, and gave satisfactory fit 
pseudo R2 value, the graphical comparison between the 
experimental values and the predicted curve suggests a risk 
of overestimating the actual hormetic effect (Belz & Piepho, 
2012). It is therefore important to have many experimental 
data within the hormetic dose zone when applying the model.

CONCLUSION

In this paper, we reviewed the existing statistical models 
for description and analyses of hormetic dose-response 
relationships. It appears that no model has the capability to 
describe all forms of hormetic dose response patterns that 
are possibly generated in toxicological studies. Each model 
has its own strengths and limitations. Thus, application of a 

Liu et al. (2011) modified the An-Johnson-Lovett model 
and introduced three new models based on ecological-limiting 
factor model of Monod (eq. 42), Mitscherlich (eq. 43) and 
logistic growth (eq. 44).

In equations 42, 43 and 44, yo, Sm, Im are as described in 
eq. 40. Parameters a, b and q are constants. When compared 
with equations 42 and 43, equations 40 and 44 can be used 
to describe broader hormetic dose range. In addition, the 
An-Johnson-Lovett model (eq. 40) can describe the initial 
‘no effect’ doses before the initial stimulation of effect 
at low doses (see Fig. 8c), the advantage it shares with the 
bilogistic or the extended logistic models (see Alloisio et al., 
2015) but not the Brain-Cousens or Cedergreen-Ritz-Streibig 

Fig. 8: Dose-response relationships generated from equations 36 (a), 38 (b), 40 (c), 42 (d), 43 (e) and 44 (f). Curves are plotted with arbitrary values of the 
parameters to show characteristic features of the models.
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particular model may depend on the need of the investigator(s) 
and the peculiarities of the data under analysis. However, the 
multiplicative and the extended models based on algebraic 
multiplication or addition of logistic functions for analyses 
of multiphasic dose-response relationship appeared to be 
versatile models for description of dose-response curves 
involving stimulation and toxicity. Be it as it may, more 
research efforts should look forward to expanding possibilities, 
in terms of application of existing models and development of 
new mathematical models for hormesis.

REFERENCES 

ABBONDANZI, F.,  CACHADA, A., CAMPISI, T., GUERRA, R., 
RACCAGNI, M. & IACONDINI, A. 2003. Optimisation of a 
microbial bioassay for contaminated soil monitoring: bacterial 
inoculum standardisation and comparison with Microtox® 
assay. Chemosphere, 53: 889 – 897.  http://dx.doi.org/10.1016/
S0045-6535(03)00717-3

ALLOISIO, S., NOBILE, M. & NOVELLINO A. 2015. 
Multiparametric characterisation of neuronal network activity for 
in vitro agrochemical neurotoxicity assessment. Neuro Toxicol. 
48:152–165. http://dx.doi.org/10.1016/j.neuro.2015.03.013

ALTENBURGER, R., BACKHAUS, T., BOEDEKER, W., FAUST, 
M., SCHOLZE, M. & GRIMME, L.H.  2000. Predictability of 
the toxicity of the multiple chemical mixtures to vibrio fischeri: 
mixtures composed of similarly acting chemicals. Environ. 
Toxicol. Chem. 19(9): 2341-2347. http://dx.doi.org/10.1002/
etc.5620190926

AN, M., JOHNSON, I. R. & LOVETT, J. V. 1993. Mathematical 
modeling of allelopathy: Biological response to allelochemicals 
and its interpretation. J. Chem. Ecol. 19:2379 – 2388. http://
dx.doi.org/10.1007/BF00979671

AZGM, A. AND GÖKSU, M.Z.L. 2015. Acute toxicity of fluazifop-
p-butyl (herbicide) on Oreochromis niloticus (L., 1754) larvae. 
Turkish J. Fish. Aquatic Sci. 15:773 – 775.

BECKON, W.N., PARKINS, C., MAXIMOVICH, A.    AND 
BECKON, A.V. 2008. A General Approach to Modeling 
biphasic relationships. Environ. Sci. Technol. 42:1308 – 1314. 
http://dx.doi.org/10.1021/es071148m

BEDNARKIEWICZ, A., RODRIGUES, R.M. & WHELAN, M. P. 
2011. Non-invasive monitoring of cytotoxicity based on kinetic 
changes of cellular autofluorescence. Toxicol. Vitro. 25:2088–
2094. http://dx.doi.org/10.1016/j.tiv.2011.09.008

BELGERS, J.D.M., VAN LIEVERLOO, R.J., VAN DER PAS, L.J.T. 
& VAN DEN BRINK, P.J. 2007. Effects of the herbicide 2,4-D 
on the growth of nine aquatic macrophytes. Aquatic Botany. 86: 
260–268. http://dx.doi.org/10.1016/j.aquabot.2006.11.002

BELZ, R. G. 2014. Is hormesis an underestimated factor in 
the development of herbicide resistance? 26th German 
Conference on weed Biology and Weed Control, March 11-
13, 2014, Braunschweig, Germany. http://dx.doi.org/10.5073/
jka.2014.443.009 

BELZ, R.G., CEDERGREEN, N. & SØRENSEN, H.  2008. 
Hormesis in mixtures ‒ Can it be predicted? Sci. Total Environ. 
404:77 ‒ 87. http://dx.doi.org/10.1016/j.scitotenv.2008.06.008

BELZ, R.G. & CEDERGREEN, N. 2010. Parthenin hormesis in 
plants depends on growth conditions. Environ. Exp. Botany. 
69:293 – 301. http://dx.doi.org/10.1016/j.envexpbot.2010.04.010

BELZ, R.G., CEDERGREEN, N. & DUKE, S.O. 2011. Herbicide 
hormesis – can it be useful in crop production? Weed Res. 51:321–
332. http://dx.doi.org/10.1111/j.1365-3180.2011.00862.x

BELZ, R.G. & LEBERLE, C. 2012.  Low dose responses of different 
glyphosate formulations on plants. Proceedings of 25th German 
Conference on Weed Biology and Weed Control, March 13-
15, 2012, Braunschweig, Germany. http://dx.doi.org/10.5073/
jka.2012.434.052

BELZ, R.G. & PIEPHO, H-P. 2012. Modeling effective dosages in 
hormetic dose-response studies.  Plos One: 7(3): 1  – 10. http://
dx.doi.org/10.1371/journal.pone.0033432

BOYD, E.M., MEHARG, A.A., WRIGHT, J. &. KILLGAM, K. 
1997. Assessment of toxicological interaction of benzene and 
its primary degradation products (catechol and phenol) using a 
lux –modified bacterial bioassay. Environ. Toxicol. Chem. 16(5): 
849–856. http://dx.doi.org/10.1002/etc.5620160503

BRACK, A., STRUBE, J., STOLZ, P.& DECKER, H. 2003. Effects 
of ultrahigh dilutions of 3,5-dichlorophenol on the luminescence 
of the bacterium Vibrio fischeri. Bioch. Bioph. Acta. 1621(3): 
253−260. http://dx.doi.org/10.1016/s0304-4165(03)00076-x

BRAIN, P. & COUSENS, R., 1989. An equation to describe dose 
responses where there is stimulation of growth at low doses. Weed 
Res. 29:93 – 96. http://dx.doi.org/10.1111/j.1365-3180.1989.
tb00845.x

CALABRESE, E.J., BALDWIN, L.A. & HOLLAND, C.D. 1999. 
Hormesis: a highly generalizable and reproducible phenomenon 
with important implications for risk assessment. Risk Anal. 
19:261 – 281. http://dx.doi.org/10.1023/A:1006977728215

CALABRESE, E. J. & BALDWIN, L.A. 2001. Hormesis: A 
Generalizable and Unifying Hypothesis. Crit. Rev. Toxicol. 
31(4&5):353 – 424. http://dx.doi.org/10.1080/20014091111730

CALABRESE, E.J., & BLAIN, R. 2005. The occurrence of hormetic 
dose responses in the toxicological literature, the hormesis 
database: an overview. Toxicol. Appl. Pharmacol. 202:289 – 
301. http://dx.doi.org/10.1016/j.taap.2004.06.023

CALABRESE, E. J & BLAIN, R. B.  2009. Hormesis and plant 
biology. Environ. Pollut. 157: 42 – 48. http://dx.doi.org/10.1016/j.
envpol.2008.07.028

CASTRO-FERREIRA, M.P., ROELOFS, D., VAN GESTEL, 
A.M., VERWEIJ, R.A.  . SOARES, A.M.V.M. & AMORIM, 
M.J.B. 2012. Enchytraeus crypticus as model species in soil 
ecotoxicology. Chemosphere, 87(11):1222 – 1227. http://dx.doi.
org/10.1016/j.chemosphere.2012.01.021

CEDERGREEN, N., RITZ, C. & STREIBIG, J.C.  2005. Improved 
empirical model describing hormesis. Environ. Toxicol. Chem. 
24:3166 ‒ 3172. http://dx.doi.org/10.1897/05-014R.1

CEDERGREEN, N., STREIBIG, J. C., KUDSK P., STEPHEN, O., 
DUKE S. O. & MATHIASSEN S. K. 2007. The occurrence of 
hormesis in plants and algae. Dose-Response. 5:150–162. http://
dx.doi.org/10.2203/dose-response.06-008 

CEDERGREEN, N. 2008a. Is the growth stimulation by low doses 
of glyphosate sustained over time? Environ. Pollut. 156:1099 – 
1104. http://dx.doi.org/10.1016/j.envpol.2008.04.016

CEDERGREEN, N. 2008b. Herbicides can stimulate plant growth. 
Weed Res. 48: 429 – 438. http://dx.doi.org/10.1111/j.1365-
3180.2008.00646.x

CEDERGREEN, N., FELBY, C., PORTER, J. R. & STREIBIG, J. 
C.  2009. Chemical stress can increase crop yield. Field Crops 
Res. 114:54 – 57. http://dx.doi.org/10.1016/j.fcr.2009.07.003

CEDERGREEN, N. & OLESEN, F.  2010. Can glyphosate stimulate 
photosynthesis? Pesticide Bioch. Physiol. 96:140 – 148. http://
dx.doi.org/10.1016/j.pestbp.2009.11.002

CHEN, F.,  LIU, S-S., YU, M., QU, R. & WANGA, M-C. 2015. 
Blocking the entrance of AMP pocket results in hormetic 
stimulation of imidazolium-based ionic liquids to firefly 
luciferase. Chemosphere, 132:108 – 113. http://dx.doi.
org/10.1016/j.chemosphere.2015.03.030



54   Ecotoxicol. Environ. Contam., v. 12, n. 1, 2017 Nweke & Ogbonna

CHO, C-W., PHAM, T.P.T., JEON, Y-C., VIJAYARAGHAVAN, 
K., CHOE, W-S. & YUN, Y-S.  2007. Toxicity of 
imidazolium salt with anion bromide to a phytoplankton 
Selenastrum capricornutum: Effect of alkyl-chain length. 
Chemosphere, 69:1003 – 1007. http://dx.doi.org/10.1016/j.
chemosphere.2007.06.023

CHO, C-W., JEON, Y-C., PHAM, T.P.T., VIJAYARAGHAVAN, 
K. & YUN, Y-S.  2008. The ecotoxicity of ionic liquids 
and traditional organic solvents on microalga Selenastrum 
capricornutum. Ecotoxicol. Environ. Safety. 71:166 – 171. 
http://dx.doi.org/10.1016/j.ecoenv.2007.07.001

CHRISTOFI, N., HOFFMANN, C. & TOSH, L. 2002. Hormesis 
responses of free and immobilized light-emitting bacteria. 
Ecotoxicol. Environ. Safety. 52:227 – 231. http://dx.doi.
org/10.1006/eesa.2002.2203

DE SILVA, P. M. C. S. & VAN GESTEL, C. A. M.  2009. 
Comparative sensitivity of Eisenia andrei and Perionyx excavatus 
in earthworm avoidance tests using two soil types in the tropics. 
Chemosphere, 77:1609 – 1613. http://dx.doi.org/10.1016/j.
chemosphere.2009.09.034

DENG, Z., LIN, Z., ZOU, X., YAO, Z., TIAN, D., WANG, D. & 
YIN, D.  2012. Models of hormesis and its toxicity mechanism 
based on quorum sensing. A case study on the toxicity of 
Sulfonamides to Photobacterium phosphoreum. Environ. Sci. 
Technol. 46:7746 – 7754. http://dx.doi.org/10.1021/es203490f

DI VEROLI, G. Y., FORNARI, C., GOLDLUST,  I., MILLS, 
G., KOH, S. B., BRAMHALL, J. L., RICHARDS, F. M. & 
JODRELL, D.I. 2015. An automated fitting procedure and 
software for dose-response curves with multiphasic features. Sci. 
Rep. 5:14701, 1 – 11. http://dx.doi.org/10.1038/srep14701

DRAGE, S., ENGELMEIER, D., BACHMANN, G.,  SESSITSCH,  
A.,  MITTER, B. &  HADACEK, F. (2012) Combining 
microdilution with MicroResp™: Microbial substrate utilization, 
antimicrobial susceptibility and respiration. J. Microbiol. Meth. 
88: 399 – 412. http://dx.doi.org/10.1016/j.mimet.2012.01.006

FAIRCHILD, J. F., RUESSLER, D.S. AND CARLSON, A.R. 
1998. Comparative sensitivity of five species of macrophytes 
and six species of algae to atrazine, metribuzin, alachlor and 
metalachlor. Environ. Toxicol. Chem. 17(9):1830 – 1834. http://
dx.doi.org/10.1002/etc.5620170924

FIELD, L.J., MACDONALD, D., ONORTON, S.B., INGERSOLL, 
C.G., SEVERN, C.G.,  SMORONG, D. & LINDSKOOG, R.  
2002. Predicting amphipod toxicity from sediment chemistry 
using logistic regression model. Environ. Toxicol. Chem. 
21(9):1993 – 2005. http://dx.doi.org/10.1002/etc.5620210929

FOLKER-HANSEN, P., KROGH, H. & HOLMSTRUP, M. 1996. 
Effect of dimethoate on body growth of representatives of the 
soil living mesofauna. Ecotoxicol. Environ. Safety. 33:207 – 
216. http://dx.doi.org/10.1006/eesa.1996.0027

FULLADOSA, E., MURAT, J. & VILLAESCUSA, I. 2005. 
Effect of cadmium(II), chromium(VI), and arsenic(V) on 
long-term viability- and growth inhibition assays using Vibrio 
fischeri marine bacteria. Arch. Environ. Contamin. Toxicol. 
49(3):299−306, http://dx.doi.org/10.1007/s00244-004-0170-5

GE, H-L., LIU, S-S., ZHU, X-W., LIU, H-L. & WANG, L-J.  2011. 
Predicting hormetic effects of ionic liquid mixtures on luciferase 
activity using the concentration addition model. Environ. Sci. 
Technol. 45:1623 – 1629. http://dx.doi.org/abs/10.1021/
es1018948

GROENENDIJK, D., LÜCKER, S.M.G., PLANS, M., KRAAK, M. 
H.S. &  ADMIRAAL W. 2002. Dynamics of metal adaptation 
in riverine chironomids. Environ. Pollut. 117:101 – 109. http://
dx.doi.org/10.1016/S0269-7491(01)00154-3

HOFFMANN, C. & CHRISTOFI, N. 2001. Testing the toxicity 

of influents to activated sludge plants with the Vibrio fischeri 
bioassay utilising a sludge matrix. Environ. Toxicol. 16(5):422 – 
427. http://dx.doi.org/10.1002/tox.10000

LI, Y., ZHANG, B., HE, X.,  CHENG, W-H., XU, W., LUO, 
Y.,  LIANG, R., LAO, H. & HUANG, K.  2014. Analysis of 
individual and combined effects of Ochratoxin A and zearalenone 
on HepG2 and KK-1 cells with mathematical models. Toxins. 6: 
1177 – 1192. http://dx.doi.org/10.3390/toxins6041177

LINARES, J.F., GUSTAFSSON, I., BAQUERO, F.  & MARTINEZ, 
J. L.  2006. Antibiotics as intermicrobial signaling agents instead 
of weapons. Proc. National Acad. Sci. USA (PNAS), 103 (51): 
19484 – 19489. http://dx.doi.org/10.1073/pnas.0608949103

LIU, Y., CHEN, X., DUAN, S., FENG, Y. & AN, M. 2011. 
Mathematical modeling of plant allelopathic hormesis based on 
ecological-limiting-factor models. Dose-Response. 9:117–129. 
http://dx.doi.org/10.2203/dose-response.09-050.Liu

LOVETT, J. W., RYUNTYU, M. Y. & LIU D, L. 1989. Allelopathy, 
chemical communication, and plant defense. J. Chem. Ecol. 
15:1193 – 1202. http://dx.doi.org/10.1007/BF01014822

LYLES, R.H., POINDEXTER, C., EVANS, A.,  BROWN, M. & 
COOPER, C.R.  2008. Nonlinear model-based estimates of 
IC50 for studies involving continuous therapeutic dose–response 
data. Contemp. Clinical Trials. 29:878–886. http://dx.doi.
org/10.1016/j.cct.2008.05.009

MIGLIORE, L., GODEAS, F., DE FILIPPIS, S.P., MANTOVI, 
P., BONAZZI, G., BARCHI, D, TESTA, C., RUBATTU, N. 
& BRAMBILLA, G. 2010. Hormetic effect(s) of tetracyclines 
as environmental contaminant on Zea mays. Environ. Pollut. 
158(1):129–134. http://dx.doi.org/10.1016/j.envpol.2009.07.039

MIGLIORE, L., ROTINI, A. & THALLER, M.C.  2013. Low 
doses of tetracycline trigger the E. coli growth: a case of 
hormetic response. Dose-Response. 11:550–557. http://dx.doi.
org/10.2203/dose-response.13-002.Migliore

MULKIEWICZ, E., JASTORFI, B., SKLADANOWSKI, A.C., 
KLESZCZYŃSKI, K. & STEPNOWSKI, P. 2007. Evaluation 
of the acute toxicity of perfluorinated carboxylic acids using 
eukaryotic cell lines, bacteria and enzymatic assays. Environ. 
Toxicol. Pharmacol. 23:279–285. http://dx.doi.org/10.1016/j.
etap.2006.11.002

MURADO, M.A. & VÁZQUEZ, J.A.  2010. Basic toxicodynamic 
features of some antimicrobial agents on microbial growth: a 
dynamic mathematical model and its implications on hormesis. 
BMC Microbiology. 10:220. http://dx.doi.org/10.1186/1471-
2180-10-220

MUYSSEN, B.T.A & JANSSEN, J.A.  2001. Zinc acclimation and 
its effect on the zinc tolerance of Raphidocelis subcapitata and 
Chlorella vulgaris in laboratory experiments. Chemosphere, 
45:507–514. http://dx.doi.org/10.1016/S0045-6535(01)00047-9 

NWANYANWU, C. E. & ABU, J.A.  2010. In vitro effects of 
petroleum refinery wastewater on dehydrogenase activity in 
marine bacterial strains. Rev. Amb. Água, 5(1):21–29.

NWEKE, C.O., & OKPOKWASILI, G. C., 2010. Inhibition of 
dehydrogenase activity in petroleum refinery wastewater bacteria 
by phenolic compounds. Rev. Amb. Água. 5(1):6-16. http://
dx.doi.org/10.4136/ambi-agua.115

NWEKE, C.O. & OKPOKWASILI, G.C.  2011a. Inhibition of 
β-galactosidase and α-glucosidase synthesis in petroleum 
refinery effluent bacteria by zinc and cadmium. J. Environ. 
Chem. Ecotoxicol. 3(3):68–74. 

NWEKE C.O. & OKPOKWASILI, G.C. 2011b. Inhibition of 
β-galactosidase and α-glucosidase synthesis in petroleum 
refinery effluent bacteria by phenolic compounds. Rev. Amb. 
Água 6(1):40–53. 

NWEKE, C.O., AHUMIBE, N.C. & ORJI, J.C. 2014. Toxicity of binary 



Ecotoxicol. Environ. Contam., v.12, n. 1, 2017   55Statistical models for biphasic dose-response...

mixtures of formulated glyphosate and phenols to Rhizobium 
species dehydrogenase activity. J. Microbiol. Res. 4 (4): 161 – 
169. http://dx.doi.org/10.5923/j.microbiology.20140404.02

NWEKE, C.O., ORJI, J.C.  & AHUMIBE, N.C.  2015. Prediction 
of phenolic compound and formulated glyphosate toxicity 
in binary mixtures using Rhizobium species dehydrogenase 
activity. Adv. Life Sci. 5(2): 27 – 38. http://dx.doi.org/10.5923/j.
als.20150502.01 1500

NWEKE, C. O., IKE, C. C. & IBEGBULEM, C.O. 2016. Toxicity 
of quaternary mixtures of phenolic compounds and formulated 
glyphosate to microbial community of river water. Ecotoxicol. 
Environ. Contamin. 11: 63 – 71. http://dx.doi.org/10.5132/
eec.2016.01.09

OKOLO, J.C., NWEKE, C.O. NWABUEZE, R.N. DIKE, C.U.  & 
NWANYANWU, C.E.  2007. Toxicity of phenolic compounds 
to oxidoreductases of Acinetobacter species isolated from a 
tropical soil. Sci. Res. Essays. 2(7): 244 – 250.

ORIGIN LAB Corporation Website: http://www.originlab.com/
pdfs/curvefittingfunctions.pdf  (accessed December 17, 
2015).

RANDALL, W.A., PRICE, C.W. & WELCH, H. 1947. Demonstration 
of hormesis (increase in fatality rate) by penicillin. Am. J. Public 
Health, 37:421–425

RICE, E.L. 1984. Allelopathy. (2nd ed). Academic Press, New York, 
USA

RODEA-PALOMARES, I., GONZALEZ-GARCIA, C., LEGANES, 
F. & FERNANDEZ-PINAS, F. 2009. Effect of pH, EDTA, 
and anions on heavy metal toxicity toward a bioluminescent 
Cyanobacterial bioreporter. Arch. Environ. Contamin. Toxicol. 
57(3):477–487. http://dx.doi.org/10.1007/s00244-008-9280-9

SCHABENBERGER, O., THARP, B. E., KELLS, J. J. & PENNER, 
D. 1999. Statistical test for hormesis and effective dosages in 
herbicide dose–response. Agron. J. 91:713–721. http://dx.doi.
org/10.2134/agronj1999.914713x

SHEN, K., SHEN, C., LU, Y., TANG, X., ZHANG, C., CHEN, 
X., SHI, J., LIN, Q. & CHEN, Y. 2009. Hormesis response of 
marine and freshwater luminescent bacteria to metal exposure. 
Biol. Res. 42: 183-187.

SINCLAIR, G.M., PATON, G.I.  MEHARG, A.A.  & KILLHAM, 
K.  1999. Lux- biosensor assessment of pH effects on microbial 
sorption and toxicity of chlorophenols. FEMS Microbiol. Letters, 
174: 273 – 278. http://dx.doi.org/10.1111/j.1574-6968.1999.
tb13579

STEPNOWSKI, P., SKLADANOWSKI, A.C., LUDWICZAK, A. 
& ACZY´NSKA, E. 2004. Evaluating the cytotoxicity of ionic 
liquids using human cell line HeLa. Hum. Exp. Toxicol. 23:513. 
http://dx.doi.org/10.1191/0960327104ht480oa

SYSTAT SOFTWARES INCORPORATED. 2002. Table curve 2D 
5.01 for windows user’s manual. pp 11. 40 – 11.53. 

SYSTAT SOFTWARES INCORPORATED. 2006. Sigma plot 10 
user’s manual. pp 830 – 832.

TU, C., PARKHURST, A.M.,  DURSO, I.M. & HUTKINS, R.W. 
2007. Using nonlinear fixed and mixed models with switching 
functions to allow for hormesis in growth of Escherichia coli. 

19th Annual Conference Proceedings, Annual Conference on 
Applied Statistics in Agriculture. Paper 9. http://newprairiepress.
org/agstatconference/2007/proceedings/9

VELINI E. D., ALVES, E., GODOY, M.C., MESCHEDE, D.K., 
SOUZA, R.T. & DUKE, S.O. 2008. Glyphosate applied at low 
doses can stimulate plant growth. Pest. Manag. Sci. 64:489 – 
496. DOI: 10.1002/ps

WANG, L.-J., LIU, S-S., YUAN, J. & LIU, H.-L. 2011. 
Remarkable hormesis induced by 1- ethyl-3-methyl 
imidazolium tetrafluoroborate on Vibrio qinghaiensis sp.-Q67. 
Chemosphere, 84: 1440 –1445. http://dx.doi.org/10.1016/j.
chemosphere.2011.04.049

WANG, H.W., WANG, J.Q., ZHENG, B.Q., LI, S.L.,  ZHANG, S.L.  
LI, F.D. &  ZHENG, N. 2014. Cytotoxicity induced by ochratoxin 
A, zearalenone, and a-zearalenol: Effects of individual and 
combined treatment. Food Chem. Toxicol. 71:217–224. http://
dx.doi.org/10.1016/j.fct.2014.05.032

WEAVER, K.D., KIM, H. J., SUN, J., MACFARLANE, D.R. & 
ELLIOTT, G.D.  2010. Cyto-toxicity and biocompatibility 
of a family of choline phosphate ionic liquids designed for 
pharmaceutical applications. Green Chem. 12:507–513. 

WELCH, H., PRICE, C.W. & RANDALL, W.A. 1946. Increase 
in fatality rate of E. Typhosa for white mice by streptomycin. 
J. Am. Pharm. Assoc. 35:155–158. http://dx.doi.org/10.1002/
jps.3030350505

ZAKI, S., ABD-EL-HALEEM, D., ABULHAMD, A., ELBERY, 
H. & ABUELREESH, G. 2008. Influence of phenolics 
on the sensitivity of free and immobilized bioluminescent 
Acinetobacter bacterium. Microbiol. Res. 163: 277–285. http://
dx.doi.org/10.1016/j.micres.2006.07.006

ZELAYA IAN, A. & OWEN, M. D.K. 2005. Differential response of 
Amaranthus tuberculatus (Moq ex DC) JD Sauer to glyphosate. 
Pest. Manag. Sci. 61:936–950. http://dx.doi.org/10.1002/
ps.1074

ZHANG, J., LIU, S-S., YU, Z-Y. &  ZHANG, J. 2013. Time-
dependent hormetic effects of 1-alkyl-3-methylimidazolium 
bromide on Vibrio qinghaiensis sp. Q67: luminescence, redox 
reactants and antioxidases. Chemosphere, 91:462–467. http://
dx.doi.org/10.1016/j. chemosphere.2012.11.070

ZHU, X-W., LIU, S-S., GE, H-L. & LUI, Y. 2009. Comparison 
between the short term and the long-term toxicity of  six triazine 
herbicides on photobacteria Q67. Water Res. 43:1731–1739. 
http://dx.doi.org/10.1016/j.watres.2009.01.004

ZHU, X-W., LIU, S-S.,  QIN, L-T., CHEN, F. & LIU, H.-L. 2013. 
Modeling non-monotonic dose–response relationships: Model 
evaluation and hormetic quantities exploration. Ecotoxicol. 
Environ. Safety. 89:130–136. http://dx.doi.org/10.1016/j.
ecoenv.2012.11.022

ZOU, X., LIN, Z.,  DENG, Z.  YIN, D.  2013. Novel approach to 
predicting hormetic effects of antibiotic mixtures on Vibrio 
fischeri. Chemosphere. 90(7):2070–2076. http://dx.doi.
org/10.1016/j.chemosphere.2012.09.042


